Determinethe sum of the following arithmetic series. 2/3 + 5/3 + 8/3 + + 41/3 Find a formula for the nth term of the following sequence. 1, - \frac{1}{4}, \frac{1}{9}, - \frac{1}{16}, \frac{1}{25}, \cdots (a) a_n = \frac{(-1)^n}{n^2} (b) a_n = \frac{(-1)^{2n + 1{n^2} (c) a_n = \frac{(-1)^{n + 1{n^2} (d) a_n = \frac{(-1)^{n^2{ Explanation The sequence is. 1,3,5,7,9. The common difference d is the difference between any two consecutive numbers of the series. d1 = 3 − 1 = 2. d2 = 5 − 3 = 2. d3 = 7 − 5 = 2. So the common difference d of this arithmetic sequence: d = 2. Stepby-step explanation: this is a sequence of odd numbers. it goes; 1,3,5,7,9,11,13,15,17,19,21,23. arrow right. Eachnumber in the series, and any combination of those numbers is a subset of 1,3,5,7,9. To be more clear, 1 is a subset, so are 3,5,7 or 9. 1&3 are also a subset, so are 5&7 and 7&9. all of the numbers less any one of the numbers is also a subset. so 1,3,5,& & are a subset. as is 3,5,7&9. get it? FractionCalculator Step 1: Enter the fraction you want to simplify. The Fraction Calculator will reduce a fraction to its simplest form. You can also add, subtract, multiply, and divide fractions, as well as, convert to a decimal and work with mixed numbers and reciprocals. We also offer step by step solutions. Step 2: .

what is 1 3 5 7 9